Part Number Hot Search : 
ZL50062 CHIMH2PT RADIO D7811H AL5DA002 BSX48 ISS226 MT226012
Product Description
Full Text Search
 

To Download PB-IRFB61N15D Datasheet File

  If you can't view the Datasheet, Please click here to try to view without PDF Reader .  
 
 


  Datasheet File OCR Text:
  notes ? through ? are on page 8 www.irf.com 1 5/3/01 irfb61n15d smps mosfet hexfet ? power mosfet v dss r ds(on) max i d 150v 0.032 60a pd- 94207 parameter max. units i d @ t c = 25c continuous drain current, v gs @ 10v 60 i d @ t c = 100c continuous drain current, v gs @ 10v 42 a i dm pulsed drain current ? 250 p d @t a = 25c power dissipation 2.4 w p d @t c = 25c power dissipation 330 linear derating factor 2.2 w/c v gs gate-to-source voltage 30 v dv/dt peak diode recovery dv/dt ? 3.7 v/ns t j operating junction and -55 to + 175 t stg storage temperature range soldering temperature, for 10 seconds 300 (1.6mm from case ) c mounting torqe, 6-32 or m3 screw ? 10 lbf?in (1.1n?m) absolute maximum ratings l high frequency dc-dc converters l motor control l uninterrutible power supplies benefits applications l low gate-to-drain charge to reduce switching losses l fully characterized capacitance including effective c oss to simplify design, (see app. note an1001) l fully characterized avalanche voltage and current to-220ab parameter typ. max. units r jc junction-to-case CCC 0.45 r cs case-to-sink, flat, greased surface 0.50 CCC c/w r ja junction-to-ambient CCC 62 thermal resistance downloaded from: http:///
irfb61n15d 2 www.irf.com parameter min. typ. max. units conditions g fs forward transconductance 22 CCC CCC s v ds = 50v, i d = 37a q g total gate charge CCC 95 140 i d = 37a q gs gate-to-source charge CCC 26 39 nc v ds = 120v q gd gate-to-drain ("miller") charge CCC 45 68 v gs = 10v, t d(on) turn-on delay time CCC 18 CCC v dd = 75v t r rise time CCC 110 CCC i d = 37a t d(off) turn-off delay time CCC 28 CCC r g = 1.8 t f fall time CCC 51 CCC v gs = 10v ? c iss input capacitance CCC 3470 CCC v gs = 0v c oss output capacitance CCC 690 CCC v ds = 25v c rss reverse transfer capacitance CCC 150 CCC pf ? = 1.0mhz c oss output capacitance CCC 4600 CCC v gs = 0v, v ds = 1.0v, ? = 1.0mhz c oss output capacitance CCC 310 CCC v gs = 0v, v ds = 120v, ? = 1.0mhz c oss eff. effective output capacitance CCC 580 CCC v gs = 0v, v ds = 0v to 120v ? dynamic @ t j = 25c (unless otherwise specified) ns parameter typ. max. units e as single pulse avalanche energy ? CCC 520 mj i ar avalanche current ? CCC 37 a e ar repetitive avalanche energy ? CCC 33 mj avalanche characteristics s d g parameter min. typ. max. units conditions i s continuous source current mosfet symbol (body diode) CCC CCC showing the i sm pulsed source current integral reverse (body diode) ? CCC CCC p-n junction diode. v sd diode forward voltage CCC CCC 1.3 v t j = 25c, i s = 37a, v gs = 0v ? t rr reverse recovery time CCC 180 270 ns t j = 25c, i f = 37a q rr reverse recoverycharge CCC 1340 2010 nc di/dt = 100a/s ? t on forward turn-on time intrinsic turn-on time is negligible (turn-on is dominated by l s +l d ) diode characteristics 60 250 a static @ t j = 25c (unless otherwise specified) parameter min. typ. max. units conditions v (br)dss drain-to-source breakdown voltage 150 CCC CCC v v gs = 0v, i d = 250a ? v (br)dss / ? t j breakdown voltage temp. coefficient CCC 0.18 CCC v/c reference to 25c, i d = 1ma r ds(on) static drain-to-source on-resistance CCC CCC 0.032 v gs = 10v, i d = 36a ? v gs(th) gate threshold voltage 3.0 CCC 5.5 v v ds = v gs , i d = 250a CCC CCC 25 a v ds = 150v, v gs = 0v CCC CCC 250 v ds = 120v, v gs = 0v, t j = 150c gate-to-source forward leakage CCC CCC 100 v gs = 30v gate-to-source reverse leakage CCC CCC -100 na v gs = -30v i gss i dss drain-to-source leakage current downloaded from: http:///
irfb61n15d www.irf.com 3 fig 4. normalized on-resistance vs. temperature fig 2. typical output characteristics fig 1. typical output characteristics fig 3. typical transfer characteristics 0.01 0.1 1 10 100 1000 0.1 1 10 100 20 s pulse width t = 25 c j top bottom vgs 15v 10v 8.0v 7.0v 6.0v 5.5v 5.0v 4.5v v , drain-to-source voltage (v) i , drain-to-source current (a) ds d 4.5v 0.1 1 10 100 1000 0.1 1 10 100 20s pulse width t = 175 c j top bottom vgs 15v 10v 8.0v 7.0v 6.0v 5.5v 5.0v 4.5v v , drain-to-source volta g e (v) i , drain-to-source current (a) ds d 4.5v -60 -40 -20 0 20 40 60 80 100 120 140 160 180 0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5 t , junction temperature ( c) r , drain-to-source on resistance (normalized) j ds(on) v = i = gs d 10v 62a 0.01 0.1 1 10 100 1000 4 6 8 10 12 v = 25v 20s pulse width ds v , gate-to-source volta g e (v) i , drain-to-source current (a) gs d t = 25 c j t = 175 c j downloaded from: http:///
irfb61n15d 4 www.irf.com fig 8. maximum safe operating area fig 6. typical gate charge vs. gate-to-source voltage fig 5. typical capacitance vs. drain-to-source voltage fig 7. typical source-drain diode forward voltage 0.1 1 10 100 1000 0.2 0.4 0.6 0.8 1.0 1.2 1.4 v ,source-to-drain volta g e (v) i , reverse drain current (a) sd sd v = 0 v gs t = 25 c j t = 175 c j 1 10 100 1000 v ds , drain-to-source voltage (v) 10 100 1000 10000 100000 c, capacitance(pf) coss crss ciss v gs = 0v, f = 1 mhz c iss = c gs + c gd , c ds shorted c rss = c gd c oss = c ds + c gd 0 20 40 60 80 100 120 140 0 4 8 12 16 20 q , total gate charge (nc) v , gate-to-source voltage (v) g gs for test circuit see figure i = d 13 37a v = 30v ds v = 75v ds v = 120v ds 1 10 100 1000 v ds , drain-tosource voltage (v) 0.1 1 10 100 1000 i d , drain-to-source current (a) tc = 25c tj = 175c single pulse 1msec 10msec operation in this area limited by r ds (on) 100sec downloaded from: http:///
irfb61n15d www.irf.com 5 fig 10a. switching time test circuit v ds 90%10% v gs t d(on) t r t d(off) t f fig 10b. switching time waveforms v ds pulse width 1 s duty factor 0.1 % r d v gs r g d.u.t. 10v + - v dd fig 11. maximum effective transient thermal impedance, junction-to-case fig 9. maximum drain current vs. case temperature 0.001 0.01 0.1 1 0.00001 0.0001 0.001 0.01 0.1 notes: 1. duty factor d = t / t 2. peak t = p x z + t 1 2 j dm thjc c p t t dm 1 2 t , rectangular pulse duration (sec) thermal response (z ) 1 thjc 0.01 0.02 0.05 0.10 0.20 d = 0.50 single pulse (thermal response) 25 50 75 100 125 150 175 0 10 20 30 40 50 60 t , case temperature ( c ) i , drain current (a) c d downloaded from: http:///
irfb61n15d 6 www.irf.com q g q gs q gd v g charge d.u.t. v ds i d i g 3ma v gs .3 f 50k .2 f 12v current regulator same type as d.u.t. current sampling resistors + - 10 v fig 13b. gate charge test circuit fig 13a. basic gate charge waveform fig 12c. maximum avalanche energy vs. drain current fig 12b. unclamped inductive waveforms fig 12a. unclamped inductive test circuit t p v (br)dss i as 25 50 75 100 125 150 175 0 200 400 600 800 1000 1200 starting t , junction temperature ( c) e , single pulse avalanche energy (mj) j as i d top bottom 15a 26a 37a r g i as 0.01 t p d.u.t l v ds + - v dd driver a 15v 20v v gs downloaded from: http:///
irfb61n15d www.irf.com 7 p.w. period di/dt diode recovery dv/dt ripple 5% body diode forward drop re-appliedvoltage reverserecovery current body diode forward current v gs =10v v dd i sd driver gate drive d.u.t. i sd waveform d.u.t. v ds waveform inductor curent d = p. w . period + - + + + - - - fig 14. for n-channel hexfet ? power mosfets * v gs = 5v for logic level devices peak diode recovery dv/dt test circuit ? ? ? r g v dd ? dv/dt controlled by r g ? driver same type as d.u.t. ? i sd controlled by duty factor "d" ? d.u.t. - device under test d.u.t circuit layout considerations ? low stray inductance ? ground plane ? low leakage inductance current transformer ? * downloaded from: http:///
irfb61n15d 8 www.irf.com lead assignments 1 - g ate 2 - dr ain 3 - source 4 - dr ain - b - 1.32 (.052) 1.22 (.048) 3x 0.55 (.022) 0.46 (.018) 2.92 (.115) 2.64 (.104) 4.69 (.185) 4.20 (.165) 3x 0.93 (.037) 0.69 (.027) 4.06 (.160) 3.55 (.140) 1.15 (.045) min 6.47 (.255) 6.10 (.240) 3.78 (.149) 3.54 (.139) - a - 10.54 (.415) 10.29 (.405) 2.87 (.113) 2.62 (.103) 15.24 (.600) 14.84 (.584) 14.09 (.555) 13.47 (.530) 3x 1.40 (.055) 1.15 (.045) 2.54 (.100) 2x 0.36 (.014) m b a m 4 1 2 3 notes: 1 dimensioning & tolerancing per ansi y14.5m, 1982. 3 o utline co nf orms to jedec outline to-220ab. 2 controlling dimension : inch 4 heatsink & lead measurements do n ot include burrs. to-220ab part marking information to-220ab package outline dimensions are shown in millimeters (inches) ? repetitive rating; pulse width limited by max. junction temperature. ? i sd 37a, di/dt 170a/s, v dd v (br)dss , t j 175c notes: ? starting t j = 25c, l = 0.98mh r g = 25 , i as = 37a, v gs =10v ? pulse width 400s; duty cycle 2%. ? c oss eff. is a fixed capacitance that gives the same charging time as c oss while v ds is rising from 0 to 80% v dss data and specifications subject to change without notice. this product has been designed and qualified for the industrial market. qualification standards can be found on irs web site. ir world headquarters: 233 kansas st., el segundo, california 90245, usa tel: (310) 252-7105 tac fax: (310) 252-7903 visit us at www.irf.com for sales contact information . 5/01 example: this is an irf1010 lot code 1789 as s embled on ww 19, 1997 in the assembly line "c" int ernat ional rect ifier logo assembly lot code part number dat e code year 7 = 1997 week 19 line c downloaded from: http:///
note: for the most current drawings please refer to the ir website at: http://www.irf.com/package/ downloaded from: http:///


▲Up To Search▲   

 
Price & Availability of PB-IRFB61N15D

All Rights Reserved © IC-ON-LINE 2003 - 2022  

[Add Bookmark] [Contact Us] [Link exchange] [Privacy policy]
Mirror Sites :  [www.datasheet.hk]   [www.maxim4u.com]  [www.ic-on-line.cn] [www.ic-on-line.com] [www.ic-on-line.net] [www.alldatasheet.com.cn] [www.gdcy.com]  [www.gdcy.net]


 . . . . .
  We use cookies to deliver the best possible web experience and assist with our advertising efforts. By continuing to use this site, you consent to the use of cookies. For more information on cookies, please take a look at our Privacy Policy. X